
RESEARCH PAPER

Computational Prediction of CNSDrug ExposureBased on aNovel
In Vivo Dataset

Christel A. S. Bergström & Susan A. Charman & Joseph A. Nicolazzo

Received: 19 April 2012 /Accepted: 8 June 2012
# Springer Science+Business Media, LLC 2012

ABSTRACT
Purpose To develop a computational model for predicting
CNS drug exposure using a novel in vivo dataset.
Methods The brain-to-plasma (B:P) ratio of 43 diverse com-
pounds was assessed following intravenous administration to Swiss
Outbred mice. B:P ratios were subjected to PLS modeling using
calculated molecular descriptors. The obtained results were trans-
ferred to a qualitative setting in which compounds predicted to have
a B:P ratio>0.3 were sorted as high CNS exposure compounds
and those below this value were sorted as low CNS exposure
compounds. The model was challenged with an external test set
consisting of 251 compounds for which semi-quantitative values of
CNS exposure were available in the literature.
Results The dataset ranged more than 1700-fold in B:P ratio,
with 16 and 27 compounds being sorted as low and high CNS
exposure drugs, respectively. The model was a one principal
component model based on five descriptors reflecting molecu-
lar shape, electronegativity, polarisability and charge transfer,
and allowed 74% of the compounds in the training set and
76% of the test set to be predicted correctly.
Conclusion A qualitative computational model has been de-
veloped which accurately classifies compounds as being high or
low CNS exposure drugs based on rapidly calculated molecular
descriptors.

KEY WORDS blood–brain barrier . CNS exposure .
computational model . in silico prediction . physicochemical
properties

INTRODUCTION

In order for a therapeutic agent to exert its pharmacological
effect on molecular targets within the brain, it must perme-
ate the blood–brain barrier (BBB) following systemic admin-
istration. The BBB, which is formed by the endothelial cells
lining cerebral microvessels, limits the entry of blood-borne
agents into the brain through the presence of tight intercel-
lular junctions (1,2), efflux transporters (3), and drug-
metabolizing enzymes (4). Due to this restrictive nature,
the brain uptake of compounds intended to treat disorders
of the central nervous system (CNS) is often hindered.
Indeed, it has been estimated that more than 98% of com-
pounds intended to treat diseases of the CNS do not gain
access to their target due to their inherent inability to cross
the BBB (5,6). While this is a limitation for compounds
intended to reach the CNS, this may be considered benefi-
cial for those compounds whose site of action is peripheral,
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thus minimizing the potential for neurotoxicity. Therefore,
the ability of a compound to access the CNS needs to be
assessed early in drug discovery, so that structural properties
can be optimized to reach the desired effect (i.e. to either
promote or hinder CNS exposure).

In order to assess the ability of compounds to permeate
the BBB, various in vitro and in vivo models have been
developed (7–11). While each of these models provides
information on compound permeation, not all models are
conducive to the moderate to high throughput setting re-
quired when screening small drug-like compound series as
potential candidates. As a result, focus has turned to under-
standing the physicochemical and molecular properties of
small drugs in an attempt to predict BBB permeability using
computational models (12,13). Physicochemical parameters
which have been shown to be important in contributing to
BBB permeability include lipophilicity (14–16), polar sur-
face area (15,17–19), molecular weight (14,19), number of
H-bond donors and acceptors (18,19), and the number of
free rotating bonds (20,21). As a consequence of these stud-
ies, some general guidelines have been developed suggesting
that for BBB penetration, (i) the sum of nitrogen and oxygen
atoms should be 5 or less, (ii) ClogP minus the number of
nitrogen and oxygen atoms should be greater than 0 (where
ClogP is the calculated logarithm of the partition coefficient
between octanol and water), (iii) polar surface area should
be less than 60–90 Å2, (iv) molecular weight should be
<450 Da, and (v) logDpH 7.4 should be in the range of 1–3
(12). While some of the above classification systems were
based on experimental data, many predictive models have
been solely based on classifying drugs as either CNS active
or inactive, with no quantification of CNS exposure
(17,19,20). The usage of CNS activity as a source for clas-
sification may not be reflective of the concentrations reach-
ing the brain, as e.g. many compounds may permeate the
BBB and exhibit no CNS activity given their inability to
interact with relevant target receptors. Furthermore, where
some models have been developed on experimental obser-
vations, the data generated may not necessarily be reflective
of CNS exposure, as BBB transport has been measured over
a short experimental period using the in situ carotid artery
technique (15).

The aim of this study, therefore, was to develop a global
computational model, i.e. an in silico model with the ability
to predict the CNS exposure (and not BBB transport alone)
of any new small drug-like structure regardless of its chem-
ical properties and simply based on its calculated molecular
descriptors. The availability of such a model would be
extremely useful early on in the drug discovery setting, as
the CNS exposure could be predicted at a time when the
major factor contributing to the CNS exposure profile (e.g.
passive or active transport across the BBB or extent of
plasma protein binding) would not be known. In order to

undertake this assessment, it was necessary to develop a
deliberate in vivo dataset using a range of compounds whose
brain uptake is governed by processes known to be impor-
tant for CNS exposure, including passive diffusion, active
transport (influx and efflux) and high binding to plasma
proteins (i.e. low fraction unbound present to permeate the
BBB) (Table I). While it is possible to generate a dataset for
BBB penetration using an in situ carotid artery perfusion
technique (22), this technique does not consider the poten-
tial impact of plasma protein binding on CNS exposure, and
is more indicative of rate of BBB penetration. For this
reason, we chose to measure CNS exposure using the mouse
brain uptake assay (MBUA), a technique commonly
employed within the pharmaceutical industry for early pre-
clinical assessment of brain exposure (23,24). Results
obtained from the MBUA have been shown to be compa-
rable to those obtained using the brain uptake index and in
situ perfusion techniques (24). The brain-to-plasma (B:P)
ratios for our compounds, together with rapidly calculated
molecular descriptors, were subjected to PLS analysis to
develop a computational model correctly sorting com-
pounds into the groups of “high CNS exposure” (B:P>0.3)
and “low CNS exposure” (B:P<0.3). The cut-off value of
0.3 was chosen as it reflects the approach used by the
pharmaceutical industry when applying the MBUA (24).
The model was validated using an external literature dataset
of 251 compounds for which at least semi-quantitative val-
ues of B:P were obtained in rodents, primates and humans
(Supplementary Material Table SI).

MATERIALS AND METHODS

Materials

[3H]Arginine, [3H]colchicine, [3H]diazepam, [3H]digoxin,
[3H]estradiol, [3H]glycine, [3H]imipramine, [3H]proprano-
lol, [3H]tamoxifen, [3H]verapamil, [14C]caffeine, [14C]glu-
cose, [14C]lactic acid, [14C]linoleic acid, [14C]mannitol,
[14C]oleic acid and [14C]phenytoin were purchased from
Perkin Elmer (Boston, MA), [3H]decanoic acid, and [14C]
antipyrine were purchased from Sigma Aldrich (St. Louis,
MO), [3H]cyclosporine A, [3H]dopamine, [3H]hypoxan-
thine, [14C]L-alanine and [14C]L-leucine were purchased
from Amersham Biosciences (Buckinghamshire, England),
[3H]arachidonic acid, [3H]carnitine, [3H]loperamide, [3H]
quinidine, [14C]cholesterol, [14C]inulin, [14C-ibuprofen],
[14C]naproxen and [14C]sucrose were obtained from Amer-
ican Radiolabeled Chemicals, Inc. (St. Louis, MO), and
[14C]linolenic acid, [14C]palmitic acid, [3H]saquinavir,
[14C]urea and [3H]valproic acid were purchased from Mor-
avek Biochemicals (Boston, MA). The specific activities and
the sites of the radiolabel on each of these probe compounds
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Table I Brain-to-Plasma (B:P) Ratios of Each Compound 5 min After Intravenous Dosing to Swiss Outbred Mice (Mean ± SD, n03–4), Together with
Proposed Mechanism Contributing to BBB Transport and CNS Exposure

Compound Proposed factor
mediating BBB
transport

B:P ratio MW (Da) logDpH 7.4 Polar
surface
area (Ǻ2)

No. of freely
rotating bonds

No. of
H-bond
donors

No. of
H-bond
acceptors

Alanine Active uptake 0.34±0.08 89.09 −2.84 63.30 1 2 3

Amantadine Active uptake 5.35±0.95 151.25 −0.19 26.00 0 1 1

Antipyrine Passive diffusion 0.92±0.19 188.23 0.69 26.90 1 1 2

Arachidonic acid High plasma protein binding 0.51±0.20 304.47 4.02 37.30 14 1 2

Arginine Active uptake 0.58±0.03 174.20 −3.50 128.00 5 4 6

Artemether Passive diffusion 2.65* 298.37 3.02 46.20 1 0 5

Artemisinin Passive diffusion 2.92±0.80 282.33 2.61 54.00 0 0 5

Caffeine Passive diffusion 0.97±0.30 194.19 −0.08 61.80 0 0 3

Carnitine Combined active uptake and efflux 0.05±0.002 162.21 −3.32 57.50 4 2 3

Cholesterol Efflux 0.21±0.16 386.65 8.30 20.20 5 1 1

Colchicine Efflux 0.21±0.02 399.44 1.18 83.10 6 1 7

Colistin Passive diffusion 0.02±0.01 1160.71 −4.07 491.00 32 18 29

Cyclosporine A Efflux 0.18±0.02 1202.61 2.93 279.00 15 5 23

Decanoic acid Passive diffusion 1.53±0.25 172.26 1.52 37.30 8 1 2

Diazepam Passive diffusion 3.14±1.32 284.74 2.88 32.70 0 0 3

Digoxin Efflux 0.02±0.01 780.94 1.40 203.00 7 6 14

Dihydroartemisinin Passive diffusion 5.67±1.33 248.35 2.35 57.20 0 1 5

Dopamine Passive diffusion 0.19±0.03 153.18 −1.55 66.50 2 3 3

Estradiol High plasma protein binding 0.43±0.02 272.38 3.58 40.50 0 2 2

Glucose Active uptake 0.54±0.15 180.16 −2.33 110.00 1 5 6

Glycine Active uptake 0.55±0.07 75.07 −3.15 63.30 1 2 3

Hypoxanthine Active uptake 0.78±0.03 136.11 −0.82 74.40 0 2 3

Ibuprofen High plasma protein binding 0.01±0.003 206.28 0.98 37.30 4 1 2

Imipramine Passive diffusion 8.40±0.69 280.41 3.25 6.48 4 0 2

Lactic acid Active uptake 0.80±0.21 90.08 −2.46 57.50 1 1 2

Leucine Active uptake 0.63±0.42 131.17 −1.76 63.30 3 2 3

Linoleic acid High plasma protein binding 0.76±0.04 280.45 4.29 37.30 14 1 2

Linolenic acid High plasma protein binding 0.87±0.22 278.43 3.68 37.30 13 1 2

Loperamide Efflux 0.03±0.02 477.04 4.64 43.80 8 1 4

Mannitol Passive diffusion 0.03±0.004 182.17 −2.5c 121.00 5 6 6

Naproxen High plasma protein binding 0.03±0.01 230.26 0.45 46.50 3 1 3

Oleic acid High plasma protein binding 0.78±0.15 282.46 4.88 37.30 15 1 2

Palmitic acid High plasma protein binding 0.91±0.50 256.42 4.52 37.30 14 1 2

Phenytoin Efflux 0.80±0.08 252.27 2.04 58.20 2 2 4

Propranolol Passive diffusion 4.29±0.45 259.34 1.16 41.50 6 2 3

Quinidine Efflux 0.09±0.03 324.42 2.26 45.60 4 1 4

Rimantadine Active uptake 17.38±1.20 179.3 0.07 26.00 1 1 1

Saquinavir Efflux 0.14±0.11 670.84 4.16 167.00 15 5 11

Sucrose Passive diffusion 0.02±0.003 342.30 −2.91 190.00 5 8 11

Tamoxifen High plasma protein binding 0.39±0.03 371.51 5.65 12.50 5 0 2

Urea Passive diffusion 0.09±0.02 60.06 −1.38 69.10 0 2 3

Valproic acid Efflux 0.03±0.003 144.21 0.42 37.30 5 1 2

Verapamil Efflux 0.47±0.02 454.60 3.86 64.00 14 0 6

logDpH7.4, polar surface area, number of freely rotating bonds (terminal bonds excluded), number of H-bond donors and number of H-bond acceptors
were calculated with ADMETPredictor (SimulationsPlus, CA)

Where available, the mechanism of transport across the BBB has been reported. For dihydroartemisinin and artemisinin, the mechanism of transport across
intestinal cells has been reported, and given the similar structure of artemether to these two compounds, a passive diffusion process has been proposed.
Given that dopamine exhibits limited BBB permeability, and it is not a substrate of an efflux transporter or highly plasma protein bound, it has been classified
in the “passive diffusion” group (26–52)

*Data obtained from n02 mice
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are reported in Supplementary Material (Table SII). Arte-
misinin was purchased from Aldrich Chemical Company
(Milwaukee, WI), amantadine, artemether, dihydroartemi-
sinin and rimantadine were purchased from Sigma (St.
Louis, MO), and colistin sulfate was purchased from Zhejiang
Shenghua Biok Biology Co., Ltd (EP5 grade, Zhejiang, Chi-
na). Solvable™ and Ultima Gold™ were purchased from
Perkin Elmer (Boston, MA). Ketamine hydrochloride (Parnell
Ketamine Injection) was obtained from Parnell Laboratories
(New South Wales, Australia) and xylazine hydrochloride
(Ilium Xylazil-100) was obtained from Troy Laboratories
Pty. Ltd. (New South Wales, Australia).

Brain Uptake of Drugs and Drug-like Molecules

All animal studies were performed in accordance with the
Australian and New Zealand Council for the Care of Ani-
mals in Research and Training Guidelines and the study
protocol was approved by the Monash Institute of Pharma-
ceutical Sciences Animal Ethics Committee. Male Swiss
Outbred mice (6–8 weeks of age; Monash Animal Services)
were administered a 50 μL solution of compound by tail
vein injection using a Terumo 0.5 mL insulin syringe
(29 G×½″, Terumo Medical Corporation, Elkton, MD)
to obtain a nominal dose of 2 μCi (for radiolabelled com-
pounds) or 5–10 mg/kg (for unlabelled compounds)
depending on solubility limitations. All compounds were
administered in 0.9%w/v NaCl, however, due to poor
aqueous solubility, artemisinin and dihydroartemisinin were
delivered in a vehicle containing 80%v/v propylene glycol
and 20%v/v DMSO, and artemether was delivered in an
aqueous vehicle containing 40%v/v propylene glycol, 10%
v/v ethanol and 5%v/v Solutol. At these doses, these or-
ganic vehicles have been shown not to alter the brain distri-
bution of marker compounds (24). At 5 min post-dose, blood
was collected by cardiac puncture (n03–4 mice) and the
whole brain was removed by making an incision through
the back of the skull. Mice were anaesthetised approximate-
ly 3–4 min prior to blood and brain harvest with an intra-
peritoneal injection of ketamine and xylazine (133 mg/kg
and 10 mg/kg, respectively). Whole blood (500–1000 μL)
was collected into 1.5 mL Eppendorf tubes containing hep-
arin sodium and centrifuged for 5 min at 6,700g.

Determination of Compound Concentration
in Plasma and Brain Homogenate

If the compound that had been administered to mice was
radiolabelled, the following processing was undertaken. A
50 μL aliquot of plasma supernatant was removed and
placed into a 6 mL polyethylene scintillation vial followed
by the addition of 2 mL of Ultima Gold™ scintillation
cocktail and subsequent analysis by liquid scintillation

counting (Tri-Carb 2800TR liquid scintillation analyser,
Perkin Elmer, Boston, MA). The whole brain (with cerebel-
lum removed) was placed into a preweighed 20 mL poly-
ethylene scintillation vial and 2 mL of Solvable™ was added
to the vial, which was maintained at 50°C overnight to
ensure total tissue solubilization. To remove colour formed
during tissue solubilization, 200 μL of 30%v/v hydrogen
peroxide was added to the vial, which was then maintained
at 50°C for a further 30 min to ensure complete decolouri-
zation. 10 mL of Ultima Gold™ scintillation cocktail was
added to each vial, followed by vortexing and analysis for
radioactivity by liquid scintillation counting.

When colistin, amantadine or rimantadine were admin-
istered to mice, a 50 μL aliquot of plasma was subjected to
HPLC, as previously described (25,26). The brain was ho-
mogenized in a volume of milli-Q water (in mL) equal to
twice or thrice the weight (in g) of the tissue, followed by
precipitation with acetonitrile and subjected to HPLC or
LCMS, as described previously (25,26).

When artemisinin, artemether and dihydroartemisinin
were administered to mice, the plasma and brain (homoge-
nized in 3 parts water by weight) were subsequently ana-
lysed for compound using LCMS. Mass spectrometry was
performed on a Micromass ZQ single quadrupole instru-
ment coupled with a Waters 2795 HPLC (Waters, Milford,
MA) with analytical separations performed on a 50×2 mm,
2.5 μm Phenomenex Synergi Polar reverse phase column
(Torrance, CA) using diazepam as an internal standard.
Samples of 10 μL were applied to the column, which was
maintained at 40°C within the autosampler compartment.
Compounds were eluted using a ternary gradient solvent
system consisting of Milli-Q water (solvent A), acetonitrile
(solvent B) and ammonium formate 0.1 M in water adjusted
to pH 3 (solvent C). The gradient profile for each compound
was 0.0–0.45 min: 2%B; 0.45–0.5 min: 2–40%B; 0.5–
5.0 min: 40–60% B; 5.0–5.5 min: 60–95%B; 5.5–6.5 min:
95%B; 6.5–7.0 min, 95–2%B, followed by a 2 min equili-
bration at initial gradient conditions. Solvent C was always
maintained at 5%. Mass spectrometry was performed with
positive mode electrospray ionization with a capillary volt-
age of 3.2 kV and compound specific source cone voltages
(15 eV for artemisinin and 17 eV for dihydroartemisinin
and artemether) with monitoring occurring at m/z of 283.1
for artemisinin and m/z of 267.4 for dihydroartemisinin and
artemether. Source block and desolvation temperatures of
90°C and 350°C were maintained, with a desolvation gas
flow rate of 350 L/h. The lowest limit of quantitation (LLQ)
for the plasma and brain homogenate assay of each com-
pound, determined by the lowest concentration exhibiting
precision less than 20% and accuracy in the range of 80–
120% from replicate analyses of 3–6 quality control sam-
ples, ranged from 25 to 500 ng/mL or ng/g. The values of
precision for these assays ranged between 4.7% and 8.4%
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and the values for the accuracy of these assays ranged
between 92.2% and 108.3%. Data acquisition, peak inte-
gration and calculations were performed using Micromass
Masslynx version 4.1 software. The concentration of com-
pound in plasma and brain samples obtained from brain
uptake studies was determined using a calibration curve
relating peak area to standard solution concentration.

Determination of Brain Vascular Plasma Volume

To determine the volume of plasma present within the brain
microvasculature (subsequently required for data analysis), a
50 μL solution of [14C]inulin (0.04 μCi/μL in 0.9%w/v
NaCl) was administered to mice by tail vein injection, and
brain and plasma samples were collected 5 min post-dose
and processed by liquid scintillation counting. Given the
molecular weight of inulin (5000 Da) and its inability to
permeate the BBB, any radioactivity present within brain
homogenate following administration of [14C]inulin is as-
sumed to be associated with the brain microvasculature
plasma, providing an estimate of the brain microvascular
plasma volume.

Calculation of Brain-to-Plasma Ratio

The concentration of compound in the brain vasculature
(Cbrain vasculature, ng/g) was determined by multiplying the
concentration of compound in the plasma (Cplasma, ng/mL)
by the plasma volume of the brain vasculature (Vp, mL/g),
as shown in Eq. 1. The plasma volume of the brain vascu-
lature was 26±6 μL/g of brain tissue (mean ± SD, n08),
assessed following intravenous administration of [14C]inulin.

Cbrain vasculature ¼ Cplasma � Vp ð1Þ
The concentration of compound in the brain parenchyma

(Cbrain, ng/g) could then be determined by the difference
between the concentration of compound detected in the brain
homogenate (Cbrain homogenate, ng/g) and the concentration of
compound in the brain vasculature (Eq. 2).

Cbrain ¼ Cbrain homogenate � Cbrain vasculature ð2Þ

A brain-to-plasma (B:P) ratio was then calculated by
comparing the concentration of compound in the brain
parenchyma (Cbrain, ng/g) to the concentration of com-
pound in the plasma (Cplasma, ng/mL) (Eq. 3), with the
assumption that 1 g of brain tissue is equivalent in density
to 1 mL of plasma (23).

B : P ¼ Cbrain

Cplasma
ð3Þ

Molecular Descriptors and Model Development

Physicochemical properties and molecular descriptors were
calculated with ADMETPredictor 5.0 (SimulationsPlus,
CA) and DragonX 1.4 (Talete, Italy). The descriptors were
used to identify structural diversity within the dataset and to
analyze which molecular features were linked to CNS ex-
posure. Structural diversity was confirmed with Principal
Component Analysis (PCA); the experimental dataset was
assessed by superimposing the compounds on the oral drug-
space. The dataset was found to be drug-like with only
palmitic acid and colistin being significant outliers from
the drug-like chemical space (Fig. 1). The relationship be-
tween molecular descriptors and CNS exposure, in the form
of the log10 of the B:P ratio, was established using partial
least squares projection to latent structures (PLS) (Simca-P
11.0, Umetrics, Sweden). In the PLS model development,
the descriptors were de-identified to not bias the variable
selection. In addition, standard pre-processing of the
descriptors was performed with all descriptors being mean
centered to improve the interpretability of the model and
scaled to unit variance to prevent descriptors that are quan-
titatively larger from dominating the model. After removal
of skewed descriptors and descriptors with zero variance, a
matrix consisting of 812 descriptors was submitted for PLS.
With the aim to maintain predictivity and increase the
robustness of the model, a variable selection was performed
in which descriptors that were not directly related to the
response were excluded (thus reducing noise). Firstly, all
descriptors except the 100 with highest importance for the
response were excluded. Secondly, variables with low or
little influence on the model, as identified by the variable
of importance plot, and highly correlated variables that
duplicated the information contained within other variables
(residing in the same area of the PLS loading plot) were
excluded to leave a few variables representing the key prop-
erties that encoded the majority of the information related
to CNS exposure. All compounds for which experimental
data was generated were included in the model develop-
ment to allow maximum structural information to influence
the model. Therefore, the variable selection process was
monitored by the R2, the cross-validated R2 (Q2 using 7
cross validation groups) and the root mean squared error of
the estimate (RMSEE). The models were validated by per-
mutation tests (100 iterations) in which the values for the
response variable were randomized and the multivariate
data analysis was repeated to detect whether chance corre-
lations had occurred. The final model consisted of five non-
correlated (R of 0.03–0.47 in the correlation matrix), signif-
icant variables. This model was challenged with a test set of
251 compounds for which semi-quantitative B:P values were
found in the literature (see Supplementary Material
Figure S1 and Table SI). To establish this dataset, an in-

Computational Prediction of CNS Drug Exposure



house dataset of 461 marketed drugs (440 orally and 21
parenterally administered drugs) was used as the primary list
for which we sought information about CNS exposure.
Stringent search criteria were used for inclusion of com-
pounds to obtain as accurate a classification of the com-
pounds as possible. The selection criteria were based on
reported B:P ratios or a clear reported indication of the
extent of compound reaching or not reaching the brain—
as an example, statements such as ‘does not permeate the
BBB’ were considered acceptable for classification into the
low CNS exposure group. We did not include compounds
that have been classified as CNS active if it was not possible
to obtain data supporting the extent to which the compound
distributes into the brain. This approach was taken so as not
to bias the CNS exposure model by measures of, or infor-
mation about, pharmacological activity in the brain. The
chemical space covered by the training set was shown to
cover that of the test set (Supplementary Material,
Figure S1) and hence, it was regarded as appropriate for
testing the final CNS exposure model.

Statistical Analyses

Significant differences in the distribution of physicochemical
properties were assessed using two-tailed Mann Whitney
non parametric tests (p<0.05) (Prism, GraphPad, version

5.04). The accuracy of in silico classifications (% of the
compounds) was calculated by

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

� 100 ð4Þ

where TP is true positive (high CNS exposure), FP is false
positive, TN is true negative (low CNS exposure) and FN is
false negative. The precision of the prediction, the sensitivity
and specificity were calculated by

Positive precision ¼ TP
TPþ FP

ð5Þ

Negative precision ¼ TN
TNþ FN

ð6Þ

Sensitivity ¼ TP
TPþ FN

ð7Þ

Specificity ¼ TN
TNþ FP

ð8Þ

where positive precision is the precision of prediction of high
CNS exposure and negative precision is that of the low CNS
exposure predictions.

RESULTS AND DISCUSSION

The 5 min post-dose B:P ratio of each probe compound,
together with the associated physicochemical properties and
the proposed factors affecting CNS exposure, are summar-
ised in Table I. The proposed mechanisms of transport
across the BBB were all taken from literature, however, in
some instances where BBB transport mechanisms were not
available (e.g. for the artemisinin-based antimalarial drugs),
data obtained from intestinal absorption studies were used
to predict the mechanism of transport across the BBB
(26–52). In addition to including compounds which perme-
ate the BBB by passive diffusion, we ensured that our
computational CNS exposure model was designed to delib-
erately include actively transported compounds in the data-
set. We did so to explore the possibility of establishing a
truly general model for CNS exposure, applicable to early
virtual screening before prior knowledge of transport mech-
anisms are obtained. We decided to design the dataset so
that equal weight was given to compounds which permeate
the BBB passively, are substrates for BBB transporters and
whose CNS access is likely to be limited by plasma protein
binding. In our experimental dataset, 35% of the com-
pounds were proposed to access the brain by passive

Palmitic acid

Colistin

Fig. 1 Structural diversity and drug-likeness of the dataset used for model
development. The 95% confidence interval of the first three principal
components (PC) of the oral drug space (explaining 72% of the chemical
variation of orally administered drugs) is shown by the grey sphere. Orally-
administered drugs marketed in Sweden (n0477) were used to extract the
oral drug space onto which the dataset used in this study was super-
imposed (red circles) to analyse the chemical diversity. The dataset was
judged as being structurally diverse and drug-like. However, palmitic acid
and colistin were shown to be significant outliers in the distance to model
analysis in all PCs extracted for the oral drug space.
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diffusion whereas 21% of the compounds were proposed
to employ influx transporters. For 23% of the com-
pounds, access to the brain was limited by the function
of BBB efflux transporters and the CNS exposure of
21% of compounds was proposed to be limited by plas-
ma protein binding.

In general, compounds which permeate the BBB via
passive diffusion demonstrated the highest B:P ratios (e.g.
propranolol with a B:P ratio of 4.29±0.45 and imipramine
with a B:P ratio of 8.40±0.69), whereas compounds which
are substrates for a known efflux transporter (e.g. digoxin
and valproic acid) or are highly plasma-protein bound (e.g.
ibuprofen and naproxen) demonstrated the lowest brain
uptake following systemic administration. Compounds
which are substrates for known active transport processes
(e.g. alanine and glucose) had intermediate B:P values.
Hence, the MBUA assay successfully ranked the brain up-
take of probe compounds in the general permeability order
of passive compounds > active transport substrates > efflux
substrates 0 compounds with high plasma protein binding,
in an order which is consistent with literature (23). One of
the major advantages of this model compared with the in situ
carotid artery perfusion model, is that the brain uptake of
compounds is assessed in an intact physiological system, and
in the presence of plasma proteins and other plasma-derived
factors which may impact on overall brain disposition. Ad-
ditionally, active transport proteins which are involved in
active uptake or efflux are not down regulated, as can be
observed when using in vitro cell culture models (8). There-
fore, this in vivo model assesses brain uptake under
physiologically-relevant conditions and is able to discrimi-
nate between compounds whose brain uptake is limited by
active uptake, active efflux, as well as high plasma protein
binding.

It is well-known that increased lipophilicity drives in-
creased CNS exposure if compounds are passively absorbed
(14–16). Figure 2 demonstrates the relationship between
lipophilicity of probe compounds and brain uptake, and as
expected for compounds permeating the BBB via passive
diffusion, a linear relationship exists between B:P ratios and
logDpH7.4 (R

2 of 0.93). Compounds exhibiting active uptake
across the BBB display a higher B:P ratio than that pre-
dicted by their lipophilicity, whereas compounds which are
substrates for efflux transport systems or are highly plasma
protein bound exhibit a B:P ratio substantially lower than
that predicted by their lipophilicity. While such phenomena
have been observed previously (15,53), the current dataset
shows a greater disparity between passively and non-
passively absorbed compounds, and uses B:P ratio in place
of PS (a permeability-surface area coefficient measured by
the in situ carotid artery technique), thereby including com-
pounds whose brain uptake is also limited by high plasma
protein binding.

While a clear relationship between lipophilicity and CNS
exposure existed for those compounds accessing the BBB by
simple passive diffusion, no relationship was evident be-
tween any previously suggested BBB permeability descrip-
tors (e.g. logDpH7.4, PSA, number of rotatable bonds,
molecular size) and CNS exposure when all compounds in
our dataset were included. However, when we classified
compounds into “low CNS exposure” or “high CNS expo-
sure” groups, some evident relationships between extent of
CNS exposure and physicochemical properties emerged
(Fig. 3). It was observed that the PSA and number of freely
rotatable bonds were significantly lower for the group of
compounds with high CNS exposure, whereas lipophilicity,
molecular weight and asphericity appeared not to differ
between both groups. This suggested the possibility that
extent of CNS exposure could be predicted based on mo-
lecular structure. To this end, we explored whether multi-
variate analysis could further predict extent of CNS
exposure from molecular structural parameters.

We used the log10 of the B:P ratio and developed a PLS
model which after variable selection contained five molecu-
lar descriptors calculated with the program DragonX.
These were (in order of importance): the maximum electro-
topological negative variation (MAXDN), the folding de-
gree index (FDI), the 3D-MoRSE signal 15 weighted by
Sanderson´s electronegativity (MOR15e), the 2nd compo-
nent shape directional WHIM index weighted by atomic
polarisability (P2p) and the mean topological charge index
of order 8 (JGI8). The descriptors resulted in a model that
was valid as assessed by Q2 and permutation test, however,
the statistics were modest (R2 of 0.57, Q2 of 0.52, RMSEE
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Fig. 2 Relationship between logDpH 7.4 and 5 min post-dose brain-to-
plasma (B:P) ratio. Compounds in this dataset are classified as permeating
the BBB by passive diffusion (●), being substrates for active influx trans-
porters (Δ), being substrates for active efflux transporters (∇) or being
highly plasma protein bound (□). The linear regression for compounds
for which CNS exposure is only affected by passive diffusion across the BBB
is shown (R200.93).
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of 0.53; Table II). We therefore chose to use the resulting
model in a qualitative mode which sorted compounds into
the “high CNS exposure” and “low CNS exposure” classes
(Fig. 4, Table III). This strategy has previously shown to be
successful when predicting another complex property, the

melting point of drugs (54). In addition, it enabled us to use
a large semi-quantitative test set for the external validation.
It was shown that 74% of the training set was accurately
predicted, and indeed, better sorting was obtained for the
external test set for which 76% of the predictions were
accurate. The precision of the predictions, the sensitivity
and selectivity are presented in Table II.

Although the BBB permeability of drugs has been exten-
sively modelled, the CNS exposure has, due to its complex-
ity, rarely been used as the response variable. Recently,
researchers at AstraZeneca published in silico approaches
to predict the unbound brain-to-plasma concentration (Kp,

uu,brain) using QSAR (55) and machine learning algorithms
(56). Their first attempts were based on 43 drugs and drug
metabolites (included in our external test set) and they
utilised 16 commonly used descriptors (hydrogen bond
properties, lipophilicity, size, flexibility, ionization proper-
ties) to develop models for prediction of the B:P ratio and
Kp,uu,brain. A model based on hydrogen bond acceptors,
logDpH7.4, and descriptors for acids and bases was devel-
oped for the B:P ratio, resulting in a Q2 of 0.69. When we
used similar descriptors calculated with the descriptor pro-
grams used herein to predict our dataset, the R2 and Q2

values produced were only 0.25 and 0.13, respectively. In
addition, the logDpH7.4 and descriptor for acids were non-
significant for our dataset. Interestingly, the model that we
developed did not contain any direct lipophilicity or hydro-
gen bond measures, although these properties to some ex-
tent may be reflected by the descriptors included in the
model. We speculate that this is a result of the rather small
number of compounds in our dataset for which the CNS
exposure was limited by passive diffusion only. Instead the

* *

Fig. 3 Differences in physicochemical properties between the “low CNS exposure” and “high CNS exposure” groups. Significantly different values were
obtained for polar surface area (PSA) and number of rotatable bonds (p<0.05). Lipophilicity, molecular weight and asphericity (ASP; a shape descriptor)
were not significantly different between the groups.

Table II Statistics for the PLS Model in the Quantitative and Qualitative
Mode

Quantitative Class Model Class Model
Model Tr set Te set

R2 0.57

Q2 0.52

RMSEEtr 0.53

MAXDN −0.35

FDI 0.30

3D-MOR15e −0.24

P2p 0.24

JGI8 −0.23

Constant −0.53

Accuracy (%) 74 76

Positive precision 0.81 0.79

Negative precision 0.67 0.73

Sensitivity 0.78 0.75

Specificity 0.69 0.81

Statistics from the PLS analysis represented by the coefficient of determi-
nation (R2 ), leave-one-out cross-validated R2 (Q2 ), the root mean square
error of the estimation of the training set (RMSEEtr), and the PLS coef-
ficients from the final model (using scaled and centered descriptors) are
shown.

Accuracy, precision, sensitivity and selectivity were calculated as described
in Eqs. 4–8. tr denotes training set (n043), te denotes test set (n0251).
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properties that were of importance for the CNS exposure of
the current dataset were related to shape (FDI and P2p),
polarisability (MAXDN and P2p), electronegativity
(MAXDN and 3D-MOR15e) and charge transfer (JGI8).
To interpret the exact meaning of each of these molecular
properties for the resulting CNS exposure is difficult since
the factors may be important for several of the processes
influencing the final CNS exposure. However, the overall
information captured by these molecular descriptors has
been identified to be of importance for BBB membrane
permeability (charge and shape) (57), BBB efflux (polaris-
ability, shape, charge) (58,59), plasma protein binding (elec-
tronegativity) (60) and Kp,uu,brain (shape) (56).

Based on our structurally diverse dataset with compounds
whose CNS access was affected by multiple processes, we were
able to develop a computational model that had the ability to
separate between compounds with low and high CNS exposure
using the cut-off value of B:P of 0.3. We also evaluated the
utility of introducing a third, intermediate class to improve the
statistics of the model, an approach we have used previously for
predicting permeability (61) and melting point (54). The qual-
itative prediction was in this case sorted into classes based on B:
P ratio of <0.3 for low CNS exposure and B:P ratio >1.0 for
high CNS exposure, with intermediate exposure between these
values. Overall, this did not result in improved statistics for this
model, however the precision in the separation between high
and low CNS exposure was significantly improved. Hence, this
suggests that it would be possible to generate highly accurate
classification models of high and low CNS exposure by

designing a dataset in which intermediate CNS exposure drugs
are excluded. Unfortunately, for the dataset studied herein, this
would result in the exclusion of 18 compounds, leaving too
small a dataset to allow effective model development.

Fig. 4 Results from the computational model development. The trend
line (continuous line) and the RMSE of the estimates of the training set
(dotted lines) are shown. The red and green boxes demonstrate how well
the compounds were predicted after transferring the model to a qualitative
prediction, sorting compounds into high and low CNS exposure groups
using a B:P ratio of 0.3 (corresponding to log B:P of -0.52) as a cut-off. Of
the falsely predicted compounds, 36% were limited in their CNS exposure
by passive diffusion, 36% by efflux, 18% by active influx and 9% (one
compound) by plasma protein binding.

Table III Predictions of ‘Low CNS Exposure’ and ‘High CNS Exposure’of
the Training Set

Compoundstr B:Pobs B:Ppred

1 Alanine High High

2 Amantadine High High

3 Antipyrine High High

4 Arachidonic acid High Low

5 Arginine High Low

6 Artemisinin High High

7 Arthemether High High

8 Caffeine High High

9 Carnitine Low Low

10 Cholesterol Low High

11 Colchicine Low Low

12 Colistin Low Low

13 Cyclosporine A Low Low

14 Decanoic acid High Low

15 Diazepam High High

16 Digoxin Low Low

17 Dihydroartemisinin High High

18 Dopamine Low High

19 Estradiol High High

20 Glucose High Low

21 Glycine High High

22 Hypoxanthine High High

23 Ibuprofen Low Low

24 Imipramine High High

25 Lactic acid High High

26 Leucine High High

27 Linoleic acid High High

28 Linolenic acid High High

29 Loperamide Low Low

30 Mannitol Low Low

31 Naproxen Low Low

32 Oleic acid High High

33 Palmitic acid High High

34 Phenytoin High High

35 Propranolol High Low

36 Quinidine Low High

37 Rimantadine High High

38 Saquinavir Low Low

39 Sucrose Low Low

40 Tamoxifen Low Low

41 Urea Low High

42 Valproic acid Low High

43 Verapamil Low High
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To certify that the model had not been overtrained, i.e. that
it was not highly specific for the dataset used for training and
less accurate for other compounds, we challenged the model
with an external test set. In total 251 compounds were tested
and indeed, higher accuracy was obtained for the test set as
compared to the training set (Table II and Supplementary
Material Table SIII). This further strengthens the conclusion
that the descriptors extracted in the model development are of
general importance for CNS exposure. The success to predict
the test set which to a large part was based on compounds for
which CNS exposure was determined at steady state, also
suggests that the less invasive and less time consuming in vivo
MBUAmay be used to estimate CNS exposure at steady state.
This strengthens the potential applicability of the MBUA in
drug screening, given the limitations associated with surgical
approaches required to achieve steady state plasma (and brain)
concentrations in rodents. Despite the benefits associated with
theMBUA, it is limited by the fact that it provides a measure of
total brain concentrations, and not free brain concentrations,
which is what governs pharmacological activity. To computa-
tionally predict the pharmacological effect in the CNS, more
elaborate in silico models would be needed, and typically such
predictions need to involve a combination of several different
approaches such as in silico Kp,uu,brain models combined with
virtual docking to CNS targets. To date, models for e.g. frac-
tion unbound in plasma are present (e.g. included in several
software including ADMETPredictor used in this study) and
the first attempts to predict unbound volume of distribution in
the brain and Kp,uu,brain have been published (55,56). Unfor-
tunately the more extensive models are trained on datasets that
are not revealed and/or the final descriptors and the equations
used for calculations are not disclosed (56), therefore, limiting
the transferability of such models to other laboratories. In
addition to models for Kp,uu,brain and volume of distribution,
computational models for prediction of active transport across
the BBB are warranted to more accurately predict the amount
of drug that reaches the brain.

The interplay between transporters, the possibility of trans-
porter modulation (stimulation, inhibition) and species differ-
ences in protein expression and substrate specificity are factors
that contribute to the complexity of predictions of active trans-
port. Although the intent of this computational model was not
to predict CNS exposure based on ability to be actively trans-
ported across the BBB, we are encouraged by the fact that our
model predicted 70% of the actively transported compounds
in our training set correctly. The corresponding numbers for
the passively diffusing compounds and highly protein bound
compounds are 71% and 89%, respectively. The exact mean-
ing of each of these numbers is difficult to extract since each
subgroup is relatively small, consisting of 9–14 compounds. A
larger number of compounds would be required to further
determine the potential of such computational models to ac-
curately predict CNS exposure based on mechanism of

transport across the BBB or the major factor contributing to
CNS exposure. Nonetheless, we have developed a computa-
tional model that can accurately predict CNS exposure re-
gardless of the major contributing factor affecting CNS access,
which is of extreme benefit early on in the drug discovery
setting. The methods and descriptors used herein are examples
of statistical techniques and molecular descriptors that can be
used to develop such models. It is likely that other computa-
tional methods, such as support vector machine and random
forest algorithms (56,62,63), will also enable successful predic-
tions of CNS exposure.

CONCLUSIONS

We have developed a computational model which correctly
classifies compounds with high and low CNS exposure based
on previously unexploredmolecular descriptors. A novel data-
set which was designed to reflect the major processes of
importance to CNS exposure (passive diffusion across the
BBB, active BBB influx and efflux and fraction unbound in
plasma) was used to train the model and descriptors reflecting
molecular shape, polarisability, electronegativity and charge
transfer accurately predicted 76% of the 251 compounds in a
test set used to challenge the model. This study contributes to
the limited open literature on in silico prediction of CNS
exposure and our results indicate that highly complex process-
es can be predicted with reasonable accuracy from rapidly
calculated molecular descriptors.
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